Chapter 5: Algorithms and Heuristics

CS105: Great Insights in Computer Science
• Let’s talk about how many syllables we sing given a song of a certain type as the number of verses grows.

• In general, we’re interested in the number of syllables as a function of n, the number of verses.
Generalized Dreidel Song

1. I had a little dreidel
I made it out of clay
And when it's dry and ready
Oh dreidel I shall play.

Chorus:
Oh dreidel dreidel dreidel
I made it out of clay
And when it's dry and ready
Oh dreidel I shall play.

2. I had a little dreidel
I made it out of plastic
If someone steals my dreidel
I'll do something very drastic.

Chorus

3. I had a little dreidel,
I made it out of glass
My mom said when I spin it,
to spin it on the grass.

Chorus

4. I had a little dreidel,
I made it out of chocolate,
but when I went to spin it,
it had melted in my pocket.

Chorus

5. I had a little dreidel,
I made it out of wood,
and when I went to spin it,
it spun just like it should.

Chorus

6. I had a little dreidel,
I made it out of ice,
but when I went to spin it,
it melted...that's not nice!!

Chorus

7. I had a little dreidel,
I made it out of mud,
and when I went to spin it,
it fell down with a thud.

Chorus

8. I had a little dreidel,
I made it out of tin,
I made it kind of crooked,
and so I always win.

Chorus
Counting Syllables

<table>
<thead>
<tr>
<th>verses</th>
<th>syllables</th>
<th>verses</th>
<th>syllables</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>51</td>
<td>5</td>
<td>271</td>
</tr>
<tr>
<td>2</td>
<td>109</td>
<td>6</td>
<td>323</td>
</tr>
<tr>
<td>3</td>
<td>161</td>
<td>7</td>
<td>375</td>
</tr>
<tr>
<td>4</td>
<td>219</td>
<td>8</td>
<td>432</td>
</tr>
</tbody>
</table>
• Total syllables roughly, $T(n) = 54 \times n$.
Old Macdonald had a farm, E-I-E-I-O
And on his farm he had a chick, E-I-E-I-O
With a "cluck, cluck" here and a "cluck, cluck" there
Here a "cluck" there a "cluck"
Everywhere a "cluck-cluck"
With a "neigh, neigh" here and a "neigh, neigh" there
Here a "neigh" there a "neigh"
Everywhere a "neigh-neigh"
With a (snort) here and a (snort) there
Here a (snort) there a (snort)
Everywhere a (snort-snort)
With a "moo-moo" here and a "moo-moo" there
Here a "moo" there a "moo"
Everywhere a "moo-moo"
Old Macdonald had a farm, E-I-E-I-O
Old Macdonald: Verse 4

Old Macdonald had a farm, E-I-E-I-O
And on his farm he had a chick, E-I-E-I-O
With a "cluck, cluck" here and a "cluck, cluck" there
Here a "cluck" there a "cluck"
Everywhere a "cluck-cluck"
With a "neigh, neigh" here and a "neigh, neigh" there
Here a "neigh" there a "neigh"
Everywhere a "neigh-neigh"
With a (snort) here and a (snort) there
Here a (snort) there a (snort)
Everywhere a (snort-snort)
With a "moo-moo" here and a "moo-moo" there
Here a "moo" there a "moo"
Everywhere a "moo-moo"
Old Macdonald had a farm, E-I-E-I-O
Old Macdonald: Verse 4

Old Macdonald had a farm, E-I-E-I-O
And on his farm he had a chick, E-I-E-I-O

With a "cluck, cluck" here and a "cluck, cluck" there
Here a "cluck" there a "cluck"
Everywhere a "cluck-cluck"

With a "neigh, neigh" here and a "neigh, neigh" there
Here a "neigh" there a "neigh"
Everywhere a "neigh-neigh"

With a (snort) here and a (snort) there
Here a (snort) there a (snort)
Everywhere a (snort-snort)

With a "moo-moo" here and a "moo-moo" there
Here a "moo" there a "moo"
Everywhere a "moo-moo"
Old Macdonald had a farm, E-I-E-I-O

25 syllables
Old Macdonald had a farm, E-I-E-I-O
And on his farm he had a chick, E-I-E-I-O

With a "cluck, cluck" here and a "cluck, cluck" there
Here a "cluck" there a "cluck"
Everywhere a "cluck-cluck"
With a "neigh, neigh" here and a "neigh, neigh" there
Here a "neigh" there a "neigh"
Everywhere a "neigh-neigh"
With a (snort) here and a (snort) there
Here a (snort) there a (snort)
Everywhere a (snort-snort)
With a "moo-moo" here and a "moo-moo" there
Here a "moo" there a "moo"
Everywhere a "moo-moo"

Old Macdonald had a farm, E-I-E-I-O
Old Macdonald: Verse 4

Old Macdonald had a farm, E-I-E-I-O
And on his farm he had a chick, E-I-E-I-O
With a "cluck, cluck" here and a "cluck, cluck" there
Here a "cluck" there a "cluck"
Everywhere a "cluck-cluck"
With a "neigh, neigh" here and a "neigh, neigh" there
Here a "neigh" there a "neigh"
Everywhere a "neigh-neigh"
With a (snort) here and a (snort) there
Here a (snort) there a (snort)
Everywhere a (snort-snort)
With a "moo-moo" here and a "moo-moo" there
Here a "moo" there a "moo"
Everywhere a "moo-moo"

25 syllables
12 syllables
Old Macdonald had a farm, E-I-E-I-O
And on his farm he had a chick, E-I-E-I-O
With a "cluck, cluck" here and a "cluck, cluck" there
Here a "cluck" there a "cluck"
Everywhere a "cluck-cluck"

With a "neigh, neigh" here and a "neigh, neigh" there
Here a "neigh" there a "neigh"
Everywhere a "neigh-neigh"
With a (snort) here and a (snort) there
Here a (snort) there a (snort)
Everywhere a (snort-snort)
With a "moo-moo" here and a "moo-moo" there
Here a "moo" there a "moo"
Everywhere a "moo-moo"

Old Macdonald had a farm, E-I-E-I-O
Old Macdonald: Verse 4

Old Macdonald had a farm, E-I-E-I-O
And on his farm he had a chick, E-I-E-I-O
With a "cluck, cluck" here and a "cluck, cluck" there
Here a "cluck" there a "cluck"
Everywhere a "cluck-cluck"

With a "neigh, neigh" here and a "neigh, neigh" there
Here a "neigh" there a "neigh"
Everywhere a "neigh-neigh"
With a (snort) here and a (snort) there
Here a (snort) there a (snort)
Everywhere a (snort-snort)
With a "moo-moo" here and a "moo-moo" there
Here a "moo" there a "moo"
Everywhere a "moo-moo"

Old Macdonald had a farm, E-I-E-I-O

25 syllables
22 syllables
12 syllables
Old Macdonald: Verse 4

Old Macdonald had a farm, E-I-E-I-O
And on his farm he had a chick, E-I-E-I-O

With a "cluck, cluck" here and a "cluck, cluck" there
Here a "cluck" there a "cluck"
Everywhere a "cluck-cluck"

With a "neigh, neigh" here and a "neigh, neigh" there
Here a "neigh" there a "neigh"
Everywhere a "neigh-neigh"

With a (snort) here and a (snort) there
Here a (snort) there a (snort)
Everywhere a (snort-snort)

With a "moo-moo" here and a "moo-moo" there
Here a "moo" there a "moo"
Everywhere a "moo-moo"

Old Macdonald had a farm, E-I-E-I-O

25 syllables
22 syllables
12 syllables
<table>
<thead>
<tr>
<th>Old Macdonald had a farm, E-I-E-I-O</th>
</tr>
</thead>
<tbody>
<tr>
<td>And on his farm he had a chick, E-I-E-I-O</td>
</tr>
<tr>
<td>With a "cluck, cluck" here and a "cluck, cluck" there</td>
</tr>
<tr>
<td>Here a "cluck" there a "cluck"</td>
</tr>
<tr>
<td>Everywhere a "cluck-cluck"</td>
</tr>
<tr>
<td>With a "neigh, neigh" here and a "neigh, neigh" there</td>
</tr>
<tr>
<td>Here a "neigh" there a "neigh"</td>
</tr>
<tr>
<td>Everywhere a "neigh-neigh"</td>
</tr>
<tr>
<td>With a (snort) here and a (snort) there</td>
</tr>
<tr>
<td>Here a (snort) there a (snort)</td>
</tr>
<tr>
<td>Everywhere a (snort-snort)</td>
</tr>
<tr>
<td>With a "moo-moo" here and a "moo-moo" there</td>
</tr>
<tr>
<td>Here a "moo" there a "moo"</td>
</tr>
<tr>
<td>Everywhere a "moo-moo"</td>
</tr>
</tbody>
</table>

Old Macdonald had a farm, E-I-E-I-O
Old Macdonald had a farm, E-I-E-I-O
And on his farm he had a chick, E-I-E-I-O
With a "cluck, cluck" here and a "cluck, cluck" there
Here a "cluck" there a "cluck"
Everywhere a "cluck-cluck"

With a "neigh, neigh" here and a "neigh, neigh" there
Here a "neigh" there a "neigh"
Everywhere a "neigh-neigh"

With a (snort) here and a (snort) there
Here a (snort) there a (snort)
Everywhere a (snort-snort)

With a "moo-moo" here and a "moo-moo" there
Here a "moo" there a "moo"
Everywhere a "moo-moo"
Old Macdonald had a farm, E-I-E-I-O
<table>
<thead>
<tr>
<th>Line</th>
<th>Syllables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Old Macdonald had a farm, E-I-E-I-O</td>
<td>25</td>
</tr>
<tr>
<td>And on his farm he had a chick, E-I-E-I-O</td>
<td></td>
</tr>
<tr>
<td>With a "cluck, cluck" here and a "cluck, cluck" there</td>
<td>22</td>
</tr>
<tr>
<td>Here a "cluck" there a "cluck"</td>
<td></td>
</tr>
<tr>
<td>Everywhere a "cluck-cluck"</td>
<td>22</td>
</tr>
<tr>
<td>With a "neigh, neigh" here and a "neigh, neigh" there</td>
<td>22</td>
</tr>
<tr>
<td>Here a "neigh" there a "neigh"</td>
<td></td>
</tr>
<tr>
<td>Everywhere a "neigh-neigh"</td>
<td>22</td>
</tr>
<tr>
<td>With a (snort) here and a (snort) there</td>
<td>22</td>
</tr>
<tr>
<td>Here a (snort) there a (snort)</td>
<td></td>
</tr>
<tr>
<td>Everywhere a (snort-snort)</td>
<td>22</td>
</tr>
<tr>
<td>With a "moo-moo" here and a "moo-moo" there</td>
<td>12</td>
</tr>
<tr>
<td>Here a "moo" there a "moo"</td>
<td></td>
</tr>
<tr>
<td>Everywhere a "moo-moo"</td>
<td>12</td>
</tr>
<tr>
<td>Old Macdonald had a farm, E-I-E-I-O</td>
<td>25</td>
</tr>
<tr>
<td>Line</td>
<td>Syllables</td>
</tr>
<tr>
<td>------</td>
<td>-----------</td>
</tr>
<tr>
<td>Old Macdonald had a farm, E-I-E-I-O</td>
<td>25</td>
</tr>
<tr>
<td>And on his farm he had a chick, E-I-E-I-O</td>
<td>22</td>
</tr>
<tr>
<td>With a "cluck, cluck" here and a "cluck, cluck" there</td>
<td>22</td>
</tr>
<tr>
<td>Here a "cluck" there a "cluck"</td>
<td>22</td>
</tr>
<tr>
<td>Everywhere a "cluck-cluck"</td>
<td>12</td>
</tr>
<tr>
<td>With a "neigh, neigh" here and a "neigh, neigh" there</td>
<td>22</td>
</tr>
<tr>
<td>Here a "neigh" there a "neigh"</td>
<td>22</td>
</tr>
<tr>
<td>Everywhere a "neigh-neigh"</td>
<td>12</td>
</tr>
<tr>
<td>With a (snort) here and a (snort) there</td>
<td>22</td>
</tr>
<tr>
<td>Here a (snort) there a (snort)</td>
<td>22</td>
</tr>
<tr>
<td>Everywhere a (snort-snort)</td>
<td>12</td>
</tr>
<tr>
<td>With a "moo-moo" here and a "moo-moo" there</td>
<td>12</td>
</tr>
<tr>
<td>Here a "moo" there a "moo"</td>
<td>12</td>
</tr>
<tr>
<td>Everywhere a "moo-moo"</td>
<td>12</td>
</tr>
<tr>
<td>Old Macdonald had a farm, E-I-E-I-O</td>
<td>12</td>
</tr>
</tbody>
</table>
Old Macdonald had a farm, E-I-E-I-O
And on his farm he had a chick, E-I-E-I-O
With a "cluck, cluck" here and a "cluck, cluck" there
Here a "cluck" there a "cluck"
Everywhere a "cluck-cluck"
With a "neigh, neigh" here and a "neigh, neigh" there
Here a "neigh" there a "neigh"
Everywhere a "neigh-neigh"
With a (snort) here and a (snort) there
Here a (snort) there a (snort)
Everywhere a (snort-snort)
With a "moo-moo" here and a "moo-moo" there
Here a "moo" there a "moo"
Everywhere a "moo-moo"
Old Macdonald had a farm, E-I-E-I-O

25 syllables
22 syllables
22 syllables
22 syllables
22 syllables
12 syllables
Old Macdonald had a farm, E-I-E-I-O
And on his farm he had a chick, E-I-E-I-O
With a "cluck, cluck" here and a "cluck, cluck" there
Here a "cluck" there a "cluck"
Everywhere a "cluck-cluck"
With a "neigh, neigh" here and a "neigh, neigh" there
Here a "neigh" there a "neigh"
Everywhere a "neigh-neigh"
With a (snort) here and a (snort) there
Here a (snort) there a (snort)
Everywhere a (snort-snort)
With a "moo-moo" here and a "moo-moo" there
Here a "moo" there a "moo"
Everywhere a "moo-moo"
Old Macdonald had a farm, E-I-E-I-O

25 syllables
22 syllables
22 syllables
22 syllables
22 syllables
12 syllables
37 + 4 x 22
= 125 syllables
Old Macdonald: Verse 4

<table>
<thead>
<tr>
<th>Old Macdonald had a farm, E-I-E-I-O</th>
<th>25 syllables</th>
</tr>
</thead>
<tbody>
<tr>
<td>And on his farm he had a chick, E-I-E-I-O</td>
<td>22 syllables</td>
</tr>
<tr>
<td>With a "cluck, cluck" here and a "cluck, cluck" there</td>
<td>22 syllables</td>
</tr>
<tr>
<td>Here a "cluck" there a "cluck"</td>
<td>22 syllables</td>
</tr>
<tr>
<td>Everywhere a "cluck-cluck"</td>
<td>22 syllables</td>
</tr>
<tr>
<td>With a "neigh, neigh" here and a "neigh, neigh" there</td>
<td>22 syllables</td>
</tr>
<tr>
<td>Here a "neigh" there a "neigh"</td>
<td>22 syllables</td>
</tr>
<tr>
<td>Everywhere a "neigh-neigh"</td>
<td>22 syllables</td>
</tr>
<tr>
<td>With a (snort) here and a (snort) there</td>
<td>22 syllables</td>
</tr>
<tr>
<td>Here a (snort) there a (snort)</td>
<td>22 syllables</td>
</tr>
<tr>
<td>Everywhere a (snort-snorT)</td>
<td>22 syllables</td>
</tr>
<tr>
<td>With a "moo-moo" here and a "moo-moo" there</td>
<td>22 syllables</td>
</tr>
<tr>
<td>Here a "moo" there a "moo"</td>
<td>12 syllables</td>
</tr>
<tr>
<td>Everywhere a "moo-moo"</td>
<td>22 syllables</td>
</tr>
<tr>
<td>Old Macdonald had a farm, E-I-E-I-O</td>
<td>25 syllables</td>
</tr>
</tbody>
</table>

Total syllables:

\[37 + 4 \times 22 = 125\] syllables

4-verse song:

\[(37 + 1 \times 22) + (37 + 2 \times 22) + (37 + 3 \times 22) + (37 + 4 \times 22) = 368\] syllables
Counting Syllables

<table>
<thead>
<tr>
<th>verses</th>
<th>syllables</th>
<th>verses</th>
<th>syllables</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>59</td>
<td>5</td>
<td>515</td>
</tr>
<tr>
<td>2</td>
<td>140</td>
<td>6</td>
<td>684</td>
</tr>
<tr>
<td>3</td>
<td>243</td>
<td>7</td>
<td>875</td>
</tr>
<tr>
<td>4</td>
<td>368</td>
<td>8</td>
<td>1088</td>
</tr>
</tbody>
</table>
Plotting Syllables

verses: n

syllables
Plotting More Syllables

Total syllables?
• Verse i has $37 + 22 \times i$ syllables.

• Song with n verses:

$$(37 + 1 \times 22) + (37 + 2 \times 22) + \ldots + (37 + n \times 22)$$
• Verse \(i \) has \(37 + 22 \times i \) syllables.

• Song with \(n \) verses:

\[
(37 + 1 \times 22) + (37 + 2 \times 22) + \cdots + (37 + n \times 22)
\]
Summing Syllables

- Verse i has $37 + 22 \times i$ syllables.
- Song with n verses:

$$37n + (1 + 2 + \ldots + n) \times 22$$
Sum of n Integers

- Old McDonald with n verses:

 $37n + 22 \times (1 + 2 + \ldots + n) =$
Sum of n Integers

- Old McDonald with n verses:

 $$37n + 22 \times (1 + 2 + \ldots + n) =$$
Sum of n Integers

$$1 + 2 + ... + 6 =$$

- Old McDonald with n verses:
 $$37n + 22 \times (1 + 2 + ... + n) =$$
Sum of n Integers

1 + 2 + ... + 6 =

$$(6 \times 7) / 2 = 21$$

- Old McDonald with n verses:

$$37n + 22 \times (1 + 2 + ... + n) =$$
Sum of n Integers

$\text{1 + 2 + ... + 6} = (6 \times 7) / 2 = 21$

$\text{1 + 2 + ... + n} =$

• Old McDonald with n verses:

\[37n + 22 \times (1 + 2 + ... + n) =\]
Sum of n Integers

- Old McDonald with n verses:
 \[37n + 22 \times (1 + 2 + \ldots + n) =\]

\[
1 + 2 + \ldots + 6 = (6 \times 7) / 2 = 21
\]

\[
1 + 2 + \ldots + n = n \times (n+1) / 2
\]
Sum of n Integers

$1 + 2 + \ldots + 6 = \frac{(6 \times 7)}{2} = 21$

$1 + 2 + \ldots + n = \frac{n \times (n+1)}{2}$

• Old McDonald with n verses:

$37n + 22 \times (1 + 2 + \ldots + n) = 11 \ n^2 + 48 \ n$
N Bottles of Beer

- Verse 99:
 99 bottles of beer on the wall.
 99 bottles of beer.
 If one of those bottles should happen to fall.
 98 bottles of beer on the wall.

- Verse i:
 29 syllables + 2 x syllables in i + syllables in i-1.

- Syllables in i?
 - Roughly the number of digits in i.
 - Very slow growing function... by googol, only reaches 101.
Logarithms

- $\lg 100 = 2$
- $\lg 10000 = 4$
- $\lg x$: roughly the number of times you can divide x by 10 before you reach 1 or less.

Other logs:
- \ln is the natural logarithm (base e)
- \log is base 2 logarithm: number of times you can halve before reaching 1 or less.
Whole Song

- So, syllables in verse i of n Bottles of Beer:
 - Approximately, $29 + 3 \lg i$.

- n verses: $29n + 3 (\lg 1 + \lg 2 + ... + \lg n)$
 - $\lg 1 + \lg 2 + ... + \lg n$ is approximately $n \lg n$
 - Approximately, $3(n \lg n) + 29n$.
• So, syllables in verse i of n Bottles of Beer:
 - Approximately, $29 + 3 \log i$.

• n verses: $29n + 3(\log 1 + \log 2 + \ldots + \log n)$
 - $\log 1 + \log 2 + \ldots + \log n$ is approximately $n \log n$
 - Approximately, $3(n \log n) + 29n$.
So, syllables in verse \(i \) of \(n \) Bottles of Beer:
- Approximately, \(29 + 3 \lg i \).

\(n \) verses:
- \(29n + 3 \left(\lg 1 + \lg 2 + \ldots + \lg n \right) \)
- \(\lg 1 + \lg 2 + \ldots + \lg n \) is approximately \(n \lg n \)
- Approximately, \(3 \left(n \lg n \right) + 29n \).
On the tenth day of Christmas, my true love sent to me
Ten lords a-leaping,
Nine ladies dancing,
Eight maids a-milking,
Seven swans a-swimming,
Six geese a-laying,
Five golden rings,
Four calling birds,
Three French hens,
Two turtle doves,
And a partridge in a pear tree.

Verse 10:
Verse i:

11 syllables + (4 + syllables in i) + (4 + syllables in $i-1$) + (4 + syllables in $i-2$) + ... + (4 + syllables in 1).

Approx., $11 + 4 \cdot i + \lg 1 + \lg 2 + ... + \lg i$

Approx., $11 + 4 \cdot i + i \cdot \lg i$.
Whole Song

- n verses:
 \[(11 + 4 + \log 1) + (11 + 8 + 2 \log 2) +
 (11 + 12 + 3 \log 3) + ... + (11 + 4n + n \log n)\]
- Approx., $11n + 2n(n+1) + .46n(n+1) \log n$.
- Approx., $.46n^2 \log n + 2n^2 + .46n \log n + 13n$.
Different Growth Rates

- With these constants, \(n^2 \lg n \) has fastest growth, then quadratic, then \(n \lg n \), then linear.

- For big \(n \), always the same order regardless of the constants!

- Leads to the notion of “Big O”.

0.572 \(n^2 \lg n \)

0.4 \(n^2 \) (Quadratic)

2.86 \(n \lg n \)

2 \(n \) (Linear)
Big O

- Formally, big O is a notation that denotes a class of functions all of which are upper bounded asymptotically.

- In practice, however, it gives us a way of ignoring constants and low-order terms to cluster together functions that behave similarly.

\[17n + 91.2 \log(n) + n^{1/2} \]
Big O

- Formally, big O is a notation that denotes a class of functions all of which are upper bounded asymptotically.

- In practice, however, it gives us a way of ignoring constants and low-order terms to cluster together functions that behave similarly.
Big O

- Formally, big O is a notation that denotes a class of functions all of which are upper bounded asymptotically.
- In practice, however, it gives us a way of ignoring constants and low-order terms to cluster together functions that behave similarly.

\[O(n) \]
Common Growth Classes

- Linear: $O(n)$
 - Dreidel
 - Clementine
- Quadratic: $O(n^2)$
 - An Old Lady
 - Old Macdonald
 - There Was a Tree
- $O(n \log n)$
 - N Bottles of Beer
 - N Little Monkeys
- $O(n^2 \log n)$
 - N Days of Christmas
 - Who Knows N?
Common Growth Classes

- Linear: $O(n)$
 - Dreidel
 - Clementine

- Quadratic: $O(n^2)$
 - An Old Lady
 - Old Macdonald
 - There Was a Tree

- $O(n \log n)$
 - N Bottles of Beer
 - N Little Monkeys

- $O(n^2 \log n)$
 - N Days of Christmas
 - Who Knows N?
Common Growth Classes

- **Linear:** $O(n)$
 - Dreidel
 - Clementine

- **Quadratic:** $O(n^2)$
 - An Old Lady
 - Old Macdonald
 - There Was a Tree

- $O(n \log n)$
 - N Bottles of Beer
 - N Little Monkeys

- $O(n^2 \log n)$
 - N Days of Christmas
 - Who Knows N?

constant size verse

each verse contains the next higher number
Common Growth Classes

• Linear: \(O(n)\)
 - Dreidel
 - Clementine

• Quadratic: \(O(n^2)\)
 - An Old Lady
 - Old Macdonald
 - There Was a Tree

 - \(O(n \log n)\)
 - \(N\) Bottles of Beer
 - \(N\) Little Monkeys

 - \(O(n^2 \log n)\)
 - \(N\) Days of Christmas
 - Who Knows \(N\)?
Common Growth Classes

• Linear: $O(n)$
 - Dreidel
 - Clementine

• Quadratic: $O(n^2)$
 - An Old Lady
 - Old Macdonald
 - There Was a Tree
 - $O(n \log n)$
 - N Bottles of Beer
 - N Little Monkeys
 - $O(n^2 \log n)$
 - N Days of Christmas
 - Who Knows N?

constant size verse

each verse contains the next higher number

each verse lists one more number than the previous

each verse a constant size larger than the previous
Another Visualization

linear (O(n))

O(n log n)

quadratic (O(n^2))
Non-Classical Songs

• As far as I know, classical songs are all linear ($O(n)$), quadratic ($O(n^2)$), $O(n \log n)$, and $O(n^2 \log n)$.

• Nevertheless, I can make up a few more songs to demonstrate a few other important growth rates.
My kids used to play this game: “I can count up to 100. One, two, skip-a-few, 99, 100!”. Or “One, two, skip-a-few, 999, 1000!”.

Number of syllables to “skip count” to n?

- $5 + 2 \lg n$: This song is $O(\lg n)$.

With exponential notation: “One, two, skip-a-few, $10^{100}-1$, 10^{100}. Now, the syllables depend on the number of digits: $O(\lg \lg n)$.
• On the flip side, consider a song in which verse i consists of singing all the numbers with exactly i digits.

• Now, a song with n verses is $O(10^n)$.

• This is an exponential growth. Something I’d like to say a bit more about.
Exponential Growth

- ipods.
- Computer speed: Moore’s Law.
- World Population.
- Bacterial growth (while the food lasts).
- Spam.
Pet Peeve Alert

• Because exponential growth rates are so common, the phrase has entered the public lexicon.

• Not always properly... Many people seem to use it to mean “a lot more”, which doesn’t really make sense.

• Let’s learn to recognize the proper use, ok?
Which Are Correct?

- **Source: Newsweek.**

- The country desperately needs to upgrade its roads and seaports, and to **exponentially** increase agricultural and manufactured exports.

 - \(\text{exports}(t) = 10^t \)

- **Exponentially** less expensive than a 20-hour flight to the Bushveld of South Africa or the remote rain forests of Costa Rica, domestic safaris can be nearly as exciting—and far more accessible for families with kids.

- The demands on an organization to carry out [multiple] attacks like that probably increase **exponentially**. In other words, to carry out four simultaneous bombings is more difficult than simply just four times the difficulty of carrying out one bombing.

 - \(\text{difficulty}(\text{targets}) = 10^{\text{targets}} \)

- But a small number of others, knowing that their chance of success with PGD is **exponentially** better, are becoming pioneers in the newest form of family planning.
The country desperately needs to upgrade its roads and seaports, and to **exponentially** increase agricultural and manufactured exports.

- exports(t) = 10^t

Exponentially less expensive than a 20-hour flight to the Bushveld of South Africa or the remote rain forests of Costa Rica, domestic safaris can be nearly as exciting—and far more accessible for families with kids.

The demands on an organization to carry out [multiple] attacks like that probably increase **exponentially**. In other words, to carry out four simultaneous bombings is more difficult than simply just four times the difficulty of carrying out one bombing.

- difficulty(targets) = 10^{targets}

But a small number of others, knowing that their chance of success with PGD is **exponentially** better, are becoming pioneers in the newest form of family planning.
• Demand for IVF treatments, which climbed **exponentially** during the past 20 years, has plateaued.

 \[
 \text{demand}(t) = 10^t
 \]

• Consequently, an unintended but **exponentially** growing number of middle-class Americans is being affected.

 \[
 \text{affectedpeople}(t) = 10^t
 \]

• I have been on television for almost 12 years, and in that relatively short time I've seen the medium change **exponentially**.

• Now in the tsunami's aftermath, global health experts worry that the dangerous microbes already lurking in underdeveloped regions of Asia will spread **exponentially**, pushing the tsunami's enormous death toll even higher.

 \[
 \text{affectedArea}(t) = 10^t
 \]

• Injury rates [for cheerleaders] are "**exponentially** higher for a flier than for a footballer," says NCCSI's Robert Cantu.
Algorithm Analysis

- Now, that we have a sense of how various quantities grow as a function of other quantities.

- Let’s apply this idea to analyzing our sock sorters.

- For each algorithm, how does the number of reaches into the laundry basket grow as a function of the number of pairs of socks n?
Random Probability Facts

• Since the sock sorting setting involves probabilities, it helps to review a few facts.

• If an event happens on each try with probability p, we’d expect $1/p$ tries (on average) before we’re successful. Example: Average number of die rolls before getting a 3 (probability 1/6) is 6.

• If we look through a randomly ordered list of length n for an item on the list, on average we’ll need to look through $1/2 (n/2)$ of the list.
Analyzing Sock Sorting

- How many socks does sockA take out of the basket to sort 50 pairs of socks?

- sockA: choose a random pair. Return to basket if no match.

- # of socks removed before a pair is found?

- Probability of a match is 1/99.

- Number of tries before match found? 99, on average.

- Each of the 99 tries removes two socks, so 198 for the first pair, on average.
So, how many socks removed to find the first pair given n pairs in the basket? 2($2n-1$) = $4n-2$.

Now, there are $n-1$ pairs left. Finding the second pair will take $4(n-1)-2 = 4n-6$ sock removals.

When there is one pair left, it takes 2 sock removals.

Total
= $2 + 6 + 10 + ... + 4n-2$
= $4(1+2+...+n)-2n$
= $4 n(n+1)/2 - 2n$
= $2n^2$.

So, $O(n^2)$ algorithm.
Intuitive Analysis

- Since the time to find each pair is proportional to the number of pairs left, the total amount of time until all pairs are found is roughly n^2.

- sockC is the same, except the time is halved. Still order n^2.

Graph:
- x-axis: pairs completed
- y-axis: # of socks removed
- Quadratic behavior ($O(n^2)$)
How about sockB?

- **sockB**: Keep a pile on the table. Grab a sock and check if its mate is already out. If not, add it to the pile.

- Since all socks are matched up and no socks are returned to the basket, each sock is removed from the basket precisely once, $2n$ if n pairs.

- So, a O(n) algorithm! Linear, order n, etc.

- No wonder it’s fast.
Algorithm Design Goal

• Not just trying to solve a problem, but solve it well with respect to some goal.

• Best way to the airport?
 - Time?
 - Money?
 - Gas?
 - What else?