The Story So Far....

- Introduction to Algorithms via Socks
- Decision Problems on Lists
- Analysis of Algorithms
 - Song Growth Rates
 - Big O Notation
 - Exponential Misuses
- Graphs
The Story So Far....

- Introduction to Algorithms via Socks
- Decision Problems on Lists

- Analysis of Algorithms
- Song Growth Rates
- Big O Notation
- Exponential Misuses
- Graphs
The Story So Far....

- Introduction to Algorithms via Socks
- Decision Problems on Lists

- Analysis of Algorithms
 - Song Growth Rates
 - Big O Notation
 - Exponential Misuses

- Graphs
The Story So Far....

- Introduction to Algorithms via Socks
- Decision Problems on Lists

- Analysis of Algorithms
 - Song Growth Rates
 - Big O Notation
 - Exponential Misuses

- Graphs

What? How Fast? Examples!
Still to Come...

- Graph Algorithms
- Sorting!
- Uncomputable Things
 - Halting Problem
- Huffman Codes
- Robots
Still to Come...

- Graph Algorithms
- Sorting!
- Uncomputable Things
- Halting Problem
- Huffman Codes
- Robots
Still to Come...

- Graph Algorithms
- Sorting!
- Uncomputable Things
 - Halting Problem
- Huffman Codes
- Robots

Examples!

Limits!
Still to Come...

- Graph Algorithms
- Sorting!
- Uncomputable Things
 - Halting Problem
- Huffman Codes
 - Robots
Graphical
Graphs Everywhere
Graphs Everywhere
Graphs Everywhere
Algorithms on Graphs

We can represent a graph in the computer by a list of nodes, and a function that, given a node \(i \), returns the list of nodes to which \(i \) is linked.
A node j is reachable from a node i if there is a path that begins at i and ends at j.

Let’s list all the nodes reachable from i.

Any node that is reachable from a node that i is linked to is also reachable.
Don’t Revisit!

- What goes wrong? Once we realize we can reach some node, we should mark it as “reached” and never pursue it again.
To-Do List Helps

• Keep track of what you need to do later once your current activity is done.

• Stack. (See ‘paintcan’ video.)
Breadth First Search
Breadth First Search

ToDo:
Breadth First Search

ToDo: A
Breadth First Search

ToDo: B
Breadth First Search

ToDo: C, D
Breadth First Search

ToDo: D,F
Breadth First Search

Todo: F, E
Breadth First Search

ToDo: E
Breadth First Search

ToDo:
Depth First
So, how does Google do it?

I. Web crawl: download known pages, collect links to other pages, repeat.

II. Indexing: Build a giant index that associates each word with a list of pages on which it appears.

III. Distributed search: Use lots and lots and lots of computers to do fast lookups.
Sorting Algorithms

• Another name for the lecture is “Google II”.
• Sorting is a great topic in CS:
 - relatively simple
 - extremely important
 - illustrates lots of different algorithms and analysis techniques

There’s more than one way to skin a cat.
What Can We Do?

• All the information is there, and we can sift through it.

• But, it’s slow and error-prone to skim through every page every time we want to find something.

• If there are N words (total) on the web pages, how long would it take to sift through them each time? (Use “big O” notation.)

• How can we organize the data to simplify?
• Phonebook, look for a last name vs. look for a first name.

• “Is there a pair that sums to 86?” Don’t have to consider all pairs.

• Is there a repeated number in the list?

• Not to mention min, max, median.
Selection Sort

• Idea is quite simple. We go through the list one item at a time.

• We keep track of the smallest item we’ve found.

• When we’re through the list, we pull the smallest item out and add it to a list of sorted items.

• We repeat until all the items have been removed.
Selection Code

About a 2 1/2 min. to sort 100 items.
Selection Sort Analysis

• How many comparisons does Selection Sort do in the worst case? Assume the list is length N. Hint: What song is it like? You can use “big O” notation.

• Does it matter whether the list is sorted or not?
Other Sorting Approaches

• How else can you imagine sorting?
• Fewer comparisons than $O(N^2)$?
 - bubblesort
 - counting sort
 - insertion sort
 - Shell sort
Guess Who?

- Each player picks a character.
- Players take turns asking each other yes/no questions.
- First player to uniquely identify the other player’s character wins!
Mindreader: Set Cards
Mindreader: Set Cards

A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Cross-Hatched?
Cross-Hatched?
Cross-Hatched?
Squiggle?
Squiggle?
Squiggle?
Insight

- Each question splits the remaining set of possibilities into two subsets (yes and no).
Insight

• Each question splits the remaining set of possibilities into two subsets (yes and no).

• We want to pick a question so that the larger of the two subsets is as small as possible.
Insight

- Each question splits the remaining set of possibilities into two subsets (yes and no).

- We want to pick a question so that the larger of the two subsets is as small as possible.

- Half!
Insight

• Each question splits the remaining set of possibilities into two subsets (yes and no).

• We want to pick a question so that the \textit{larger} of the two subsets is as \textit{small} as possible.

• Half!
Insight

• Each question splits the remaining set of possibilities into two subsets (yes and no).

• We want to pick a question so that the larger of the two subsets is as small as possible.

• Half!

• How many questions?
 • $n=1$, questions = 0
Insight

• Each question splits the remaining set of possibilities into two subsets (yes and no).

• We want to pick a question so that the larger of the two subsets is as small as possible.

• How many questions?
 • $n=1$, questions = 0
 • $n=2$, questions = 1

• Half!
Insight

- Each question splits the remaining set of possibilities into two subsets (yes and no).
- We want to pick a question so that the larger of the two subsets is as small as possible.
- Half!

How many questions?

- $n=1$, questions = 0
- $n=2$, questions = 1
- $n=4$, questions = 2
Insight

• Each question splits the remaining set of possibilities into two subsets (yes and no).

• We want to pick a question so that the larger of the two subsets is as small as possible.

• Half!

• How many questions?
 • $n=1$, questions = 0
 • $n=2$, questions = 1
 • $n=4$, questions = 2
 • $n=8$, questions = 3
Insight

- Each question splits the remaining set of possibilities into two subsets (yes and no).
- We want to pick a question so that the larger of the two subsets is as small as possible.
- Half!

How many questions?
- $n=1$, questions = 0
- $n=2$, questions = 1
- $n=4$, questions = 2
- $n=8$, questions = 3
- $n=16$, questions = 4
Insight

- Each question splits the remaining set of possibilities into two subsets (yes and no).

- We want to pick a question so that the larger of the two subsets is as small as possible.

- Half!

- How many questions?

 - $n=1$, questions = 0
 - $n=2$, questions = 1
 - $n=4$, questions = 2
 - $n=8$, questions = 3
 - $n=16$, questions = 4
 - n, questions = $\log_2 n$.
Binary Search
Binary Search

- Let’s say we have a sorted list of n items.
Binary Search

• Let’s say we have a sorted list of n items.

• How many comparisons do we need to make to find where a new item belongs in the list?
Binary Search

- Let’s say we have a sorted list of \(n \) items.
- How many comparisons do we need to make to find where a new item belongs in the list?
- Can start at the bottom and compare until the new item is bigger.
Binary Search

- Let’s say we have a sorted list of \(n \) items.
- How many comparisons do we need to make to find where a new item belongs in the list?
- Can start at the bottom and compare until the new item is bigger.
- Maximum number of comparisons?
Binary Search

• Let’s say we have a sorted list of n items.

• How many comparisons do we need to make to find where a new item belongs in the list?

• Can start at the bottom and compare until the new item is bigger.

• Maximum number of comparisons?

• One for each position: n.
Binary Search

- Let’s say we have a sorted list of n items.
- How many comparisons do we need to make to find where a new item belongs in the list?
- Can start at the bottom and compare until the new item is bigger.
- Maximum number of comparisons?
- One for each position: n.
- We can ask better questions: bigger than the halfway mark?
Binary Search

- Let’s say we have a sorted list of n items.
- How many comparisons do we need to make to find where a new item belongs in the list?
- Can start at the bottom and compare until the new item is bigger.
- Maximum number of comparisons?
- One for each position: n.
- We can ask better questions: bigger than the halfway mark?
- That gets us: $\log (n+1)$!
Binary Search Sort

- Using $O(\lg N)$ comparisons, can find where to insert the next item.

- Since we insert N items, comparisons is $O(N \lg N)$ in total.

- Can’t quite implement it that way, though: Once we find the spot, $O(N)$ to stick it in.

- However, other algorithms are really $O(N \lg N)$.

- Hillis mentions Quick Sort and Merge Sort.
Binary Sort Code

About a 1/2 min. to sort 100 items.